complete linearization - определение. Что такое complete linearization
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое complete linearization - определение

TRANSFORMATION OF THE LOGISTIC GROWTH CURVE IN A LINEAR MATHEMATICAL RELATIONSHIP
Hubbert Linearization
  • Example of a Hubbert Linearization on the US Lower-48 crude oil production.

complete graph         
SIMPLE UNDIRECTED GRAPH IN WHICH EVERY PAIR OF DISTINCT VERTICES IS CONNECTED BY A UNIQUE EDGE
Full graph; Complete Digraph; Complete digraph; K n; Tetrahedral Graph; Complete graphs
A graph which has a link between every pair of nodes. A complete bipartite graph can be partitioned into two subsets of nodes such that each node is joined to every node in the other subset. (1995-01-24)
Linearization         
FINDING LINEAR APPROXIMATION OF FUNCTION AT GIVEN POINT
Local linearization; Linearisation; Statespace approach to linearization; State-Space Approach; Linerization; Linearized
In mathematics, linearization is finding the linear approximation to a function at a given point. The linear approximation of a function is the first order Taylor expansion around the point of interest.
Complete (complexity)         
NOTION OF THE "HARDEST" OR "MOST GENERAL" PROBLEM IN A COMPLEXITY CLASS
Complete problem; Hard (complexity)
In computational complexity theory, a computational problem is complete for a complexity class if it is, in a technical sense, among the "hardest" (or "most expressive") problems in the complexity class.

Википедия

Hubbert linearization

The Hubbert linearization is a way to plot production data to estimate two important parameters of a Hubbert curve, the approximated production rate of a nonrenewable resource following a logistic distribution:

  • the logistic growth rate and
  • the quantity of the resource that will be ultimately recovered.

The linearization technique was introduced by Marion King Hubbert in his 1982 review paper. The Hubbert curve is the first derivative of a logistic function, which has been used for modeling the depletion of crude oil in particular, the depletion of finite mineral resources in general and also population growth patterns.